Tese: Topology optimization using polyhedral meshes
Aluno(a) : Régis Santos ThedinOrientador(a): Ivan Menezes
Área de Concentração: Mecânica Aplicada
Data: 30/07/2014
Link para tese/dissertação: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37112@2
Resumo: Topology optimization has had an impact in various fields and has the potential to revolutionize several areas of engineering. This method can be implemented based on the finite element method, and there are several approaches of choice. When using an element-based approach, every finite element is a potential void or actual material, whereas every element in the domain is assigned to a constant design variable, namely, density. In an Eulerian setting, the obtained topology consists of a subset of initial elements. This approach, however, is subject to numerical instabilities such as one-node connections and rapid oscillations of solid and void material (the so-called checkerboard pattern). Undesirable designs might be obtained when standard low-order elements are used and no further regularization and/or restrictions methods are employed. Unstructured polyhedral meshes naturally address these issues and offer fl exibility in discretizing non-Cartesians domains. In this work we investigate topology optimization on polyhedra meshes through a mesh staggering approach. First, polyhedra meshes are generated based on the concept of centroidal Voronoi diagrams and further optimized for finite element computations. We show that the condition number of the associated system of equations can be improved by minimizing an energy function related to the element s geometry. Given the mesh quality and problem size, different types of solvers provide different performances and thus both direct and iterative solvers are addressed. Second, polyhedrons are decomposed into tetrahedrons by a tailored embedding algorithm. The polyhedra discretization carries the design variable and a tetrahedra subdiscretization is nested within the polyhedra for finite element analysis. The modular framework decouples analysis and optimization routines and variables, which is promising for software enhancement and for achieving high fidelity solutions. Fields such as displacement and design variables are linked through a mapping. The proposed mapping-based framework provides a general approach to solve three-dimensional topology optimization problems using polyhedrons, which has the potential to be explored in applications beyond the scope of the present work. Finally, the capabilities of the framework are evaluated through several examples, which demonstrate the features and potential of the proposed approach.