Tese e Dissertação

Tese: Estratégias de aproximações analíticas hierárquicas de problemas não lineares: métodos de perturbação

Aluno(a) : Mariana Gomes Dias dos Santos
Orientador(a): Roberta Lima
Área de Concentração: Mecânica Aplicada
Data: 27/02/2019
Link para tese/dissertação: http://doi.org/10.17771/PUCRio.acad.37854

Resumo: Problemas dinâmicos governados por problemas de valor inicial (PVI) não lineares, em geral, despertam grande interesse da comunidade científica. O conhecimento da solução desses PVI facilita o entendimento das características dinâmicas do problema. Porém, infelizmente, muitos dos PVI de interesse não têm solução conhecida. Nesse caso, uma alternativa é o cálculo de aproximações para a solução. Métodos numéricos e analíticos são eficientes nessa tarefa e podem fornecer aproximações com a precisão desejada. Os métodos numéricos foram muito desenvolvidos nos últimos anos e amplamente aplicados em problemas de diversas áreas da engenharia. Pacotes computacionais de fácil utilização foram criados e hoje fazem parte dos mais tradicionais programas de simulação numérica. Entretanto, as aproximações numéricas têm uma desvantagem em relação às aproximações analíticas. Elas não permitem o entendimento de como a solução depende dos parâmetros do problema. Visto isso, esta dissertação foca na análise e implementação de técnicas analíticas denominadas métodos de perturbação. Foram estudados os métodos de Lindstedt-Poincaré e de múltiplas escalas de tempo. As metodologias foram aplicadas em um PVI envolvendo a equação de Duffing não amortecida. Programas em álgebra simbólica foram desenvolvidos com objetivo de calcular aproximações analíticas hierárquicas para a solução desse problema. Foi feita uma análise paramétrica, ou seja, estudo de como as condições iniciais e os valores de parâmetros influem nas aproximações. Além disso, as aproximações analíticas obtidas foram comparadas com aproximações numéricas calculadas através do método do Runge-Kutta. O método de múltiplas escalas de tempo também foi aplicado em um PVI que representa a dinâmica de um sistema massa-mola-amortecedor com atrito seco. Devido ao atrito, a resposta do sistema pode ser caracterizada em duas fases alternadas, a fase de stick e a fase de slip, compondo um fenômeno chamado stick-slip. Verificou-se que as aproximações obtidas para resposta do sistema pelo método de múltiplas escalas de tempo têm boa acurácia na representação da dinâmica do stick-slip.